

#### **Modeling Tools Overview**

#### Buck Creek WPP Development Project

Lucas Gregory
Texas Water Resources Institute
Texas AgriLife Research, Texas A&M University

Ifgregory@ag.tamu.edu

979.845.7869



# Land Use Analysis



- Use of aerial or satellite imagery to characterize the vegetation, water, natural surface, and cultural features on the land surface
- Several national datasets are available, but they are dated (1992 or 2001)
- TAMU Spatial Sciences Lab used recent imagery to develop current dataset for entire Buck Creek watershed

# Watershed Inventory



- Watershed boundaries
- County boundaries
- Major roads
- County Roads
- Creeks, drainages, ponds, etc.
- WWTPs
- CAFOs
- City or Town boundaries
- Census data
- Livestock Data
- Wildlife Data



## Load Duration Curve (LDC) Analysis

#### What is an LDC?



- Graphical representation of streamflow and pollutant loadings
- Real data can be compared to the stream's maximum load to indicate reductions needed
- Can <u>HELP</u> to identify the type of pollutant load









# LDC Usefulness (source ID based on LDC)



# Questions about LDCs?



- LDC Summary
  - Compare flow to pollutant levels
  - Shows general problem areas to target management (high, normal, low flows)
  - Results in a target level of needed reduction



# Spatially Explicit Load Enrichment Calculation Tool (SELECT)

# Purpose of SELECT



 Spatially explicit analysis of LULC, animals/humans in watershed, etc. to assess/determine potential sources of bacteria



#### How SELECT Works



- Determine Potential Load
  - Spatially distribute source populations for appropriate habitats
  - Apply fecal production rate
  - Aggregate to level of interest
- Develop a Qualitative Assessment of Pollutant Connectivity
  - Pollution Indicator
  - Run-off Indicator
  - Distance Indicator

#### Potential Sources



- Domestic
  - Septic Systems
  - Pets
- Feral Hogs
- Livestock
  - Cattle
  - Other (Goats, Horses, Sheep, Swine)









- Wildlife
  - Deer

Other (Raccoons, Birds, Rodents)





#### Input Parameters - Cattle

#### Data Sources

- National Agricultural Statistics Service (NASS)- Livestock Populations per County
- NRCS stocking rates
- Landuse data
- County Maps

#### Assume

- Livestock evenly distributed on grasslands (71) and pasture/hay (81)
- Fecal Production Rate (USEPA, 2000)
  - 10 x 10<sup>10</sup>
     cfu/animal\*day



## Total Potential E. coli Load



Texas A&M System





Date: April 2008

# Pollutant Connectivity



- Contribution of Contaminants based on
  - Soil types
  - Slope of landscape
  - Ground cover
  - Distance from the creek
- Estimate influence of driving forces using weighted overlay

# SELECT Model Inputs



- Land Use Map for the watershed
- Livestock stocking rates
  - (25-28 ac./animal unit) native rangeland
  - (8-10 ac./animal unit) improved pasture
- Estimated Wildlife Numbers
- Human influences
- Point sources

#### Livestock Numbers



- NRCS recommended Livestock stocking rates
  - (25-28 ac./animal unit) native rangeland
  - (8-10 ac./animal unit) improved pasture
- Based on Current Landuse Map Acreages
  - Rangeland
    - 25ac/au = 5,400 head
    - 28ac/au = 4,800 head
- Are these numbers close to being correct?

#### Wildlife Numbers



- TPWD Surveys for RMU 30
- Applied to entire Buck Creek Watershed
- Do you think these are correct? Over-estimates?

| Table X. TPWD estimated animal densities applied to the Buck Creek watershed |        |             |                        |                                      |        |       |
|------------------------------------------------------------------------------|--------|-------------|------------------------|--------------------------------------|--------|-------|
|                                                                              | Yea    | r and Acres | Average<br>Acre/Animal | Estimated<br>Watershed<br>Population |        |       |
|                                                                              | 2005   | 2006        | 2007                   | 2008                                 |        |       |
| White-tailed Deer                                                            | 77.65  | 74.36       | 50.88                  | 29.01                                | 57.98  | 3,190 |
|                                                                              | 2006   | 2007        | 2008                   | 2009                                 |        |       |
| Mule Deer                                                                    | 137.73 | 125.38      | 160.97                 | 92.46                                | 129.14 | 1,432 |
|                                                                              |        |             |                        | 2009                                 |        |       |
| Feral Hogs                                                                   |        |             |                        | 200                                  | 200    | 925   |

# Next Steps for Modeling



- LDCs on historical data will be developed and presented at the next meeting (Summer 09)
- Begin setting up the SELECT model with your inputs
- Present initial SELECT results (Fall 09) and refine based on your comments (Winter 09)

# Questions?



Lucas Gregory
Texas Water Resources Institute
Texas AgriLife Research, Texas
A&M University

<u>lfgregory@ag.tamu.edu</u> 979.845.7869

