Bacterial Source Tracking
Identification of Fecal Pollution Sources Impacting Buck Creek

George D. Di Giovanni, PhD
Professor and Faculty Fellow, Environmental Microbiology
Department of Plant Pathology and Microbiology

Texas AgriLife Research Center at El Paso
Texas A&M University System
Acknowledgments

Texas AgriLife Research El Paso Staff

Joy Truesdale

Dr. Elizabeth Casarez

Dr. Karina Barrella

Texas AgriLife Research Vernon Staff

Phyllis Dyer

Funding

Provided by the Texas State Soil and Water Conservation Board through a Clean Water Act §319(h) Nonpoint Source Grant from the U.S. Environmental Protection Agency
There Are *E. coli* in the Water, But Where Did They Come From?

Develop Watershed Protection Plans

Can Bacterial Source Tracking (BST) be a tool?

Track fecal pollution sources using *E. coli*

Different guts → Different adaptations → Different *E. coli* strains →

Genetic Differences

Phenotypic Differences
There Are *E. coli* in the Water, But Where Did They Come From?

- BST - laboratory tests to determine if *E. coli* in water samples came from animal or human feces

- Most *E. coli* BST methods are Library Dependent
 - Need database of reference bacteria from known animal and human sources

- “Local” watershed libraries currently considered most useful
 - Cost and time considerations
Approach
Isolation of *E. coli* From Source and Water Samples

- *E. coli* isolation from samples using same media for compliance water monitoring
 - USEPA Method 1603 – modified mTEC medium
 - Confirmation of β-D-glucuronidase activity of isolates using NA-MUG (same as Colilert and Quanti-Tray)
 - No broth enrichment or clinical media - avoid selecting different populations of *E. coli*
Isolation of *E. coli* From Feces and Water

Fecal Specimens

Water Sample Filtered and Filter Placed on Modified mTEC Medium (EPA Method 1603)

Modified mTEC Medium

E. coli Colonies

Each *E. coli* colony is an “isolate”
E. coli BST Technique 1
ERIC-PCR Fingerprinting

- Enterobacterial repetitive intergenic consensus sequence polymerase chain reaction (ERIC-PCR)
- Method of generating a DNA fingerprint for each E. coli isolate
- Different strains of E. coli have different fingerprints
E. coli BST Technique 2

HindIII Automated RiboPrinting

- Another DNA fingerprinting test
- Also confirms isolates as E. coli
Data Analysis

- Applied Maths BioNumerics software
- Library accuracy - jackknife rates of correct classification (RCC) or average RCC (ARCC)
- Comparison between different BST techniques
 - Data from different BST techniques analyzed within defined parameters
 - Composite data sets
Data Analysis

Best Match Approach

- DNA fingerprints – Pearson correlation curve-based analyses
- “Best Match” approach with minimum similarity cutoff based on laboratory QC data
 - Water isolate must match library isolate ≥ minimum similarity or unidentified
 - Identification to single library isolate with highest similarity – max similarity approach
Best ERIC-PCR Match (96.9% Similarity) of Water Isolate to Known Source (Pig) Isolate in Library

Best RiboPrint Match (95.8% Similarity) of Water Isolate to Known Source (Pig) Isolate in Library
Data Analysis
Best Match Approach

No Match (Unidentified) Water Isolate, Best ERIC-PCR Match of only 82.4% Sim Library Isolate

No Match (Unidentified) Water Isolate, Best RiboPrint Match of only 65.9% Sim to Library Isolate
ERIC-RP Composite Data Sets

Minimum similarity for match

≥ 80% identical
Texas *E. coli* BST Library (ver. 10-09)

Library Composition

- **Wildlife** (374 samples) n=413
- **Human** (327 samples) n=377
- **Domestic animals** (344 samples) n=383

Library Identification Accuracy

- 1172 isolates from 1045 different human and animal fecal samples
- 87% ARCC

![Pie chart and bar graph showing the composition and identification accuracy of the library.](chart.png)
What are Bacteroidales?

- Human and animal fecal bacteria similar to *E. coli*
- Order *Bacteroidales* (or class *Bacteroidetes*) include several different genera and species of bacteria, including *Bacteroides* and *Prevotella* spp.
- Obligate anaerobes – difficult to grow and less likely to multiply in the environment
- More abundant in feces than *E. coli*

Many different *Bacteroidales* spp./strains shared between different animals and humans

Markers (PCR primers) developed to subgroups of *Bacteroidales* that appear host specific
Library Independent Screening of Pollution Sources Using *Bacteroidales* PCR

- Markers available for:
 - General marker (humans and animals)
 - Ruminants (cattle, deer, elk, sheep, llama)
 - Humans
 - Hogs (including feral hogs)
 - Horses

- Rapid and less expensive than library methods
- Multiple studies indicate approx. 90% specificity
- Only qualitative or semi-quantitative detection
- Limited markers for wildlife and birds
Sample Processing For *Bacteroidales* PCR

- Water samples for *E. coli* counts and *Bacteroidales* PCR collected at same time
- Water samples filtered similar to process for *E. coli* analysis
- DNA extracted from filtered water concentrate
- PCR testing for *Bacteroidales* PCR markers
 - Presence/absence detection
- Both viable and dead *Bacteroidales* bacteria are detected, and therefore both recent and older contamination detected
Bacteroidales PCR

Human Marker

Ruminant Marker
Hog/Feral Hog *Bacteroidales* PCR
BST for Buck Creek

- Water samples collected 2007-2009, mostly routine low-flow conditions
- 350 *E. coli* isolates from water
 - Identification using Texas Library, including some *E. coli* isolates from Buck Creek
 - 53 *E. coli* isolates from 28 Buck Creek known source samples, 31 isolates from the 28 source samples selected for library
- 79 water samples (10 to 20 per station) for *Bacteroidales* analyses
 - General marker – general indication of human and/or animal fecal pollution
 - Human marker
 - Hog marker – including feral hogs
 - Ruminant marker – cattle, deer, llamas, sheep
Results reported by station

- BC03 - CR 40; Collingsworth County
- BC05 - FM 1056; Collingsworth County
- BC06 - CR 110; Collingsworth County
- BC10A - SH 256; Childress County
- BC10C - SH 256; Childress County
- BC11 - US 83; Childress County
Considerations For Interpreting BST Results

- Identification of *E. coli* water isolates at each station presented as pie charts
 - Provides *an estimate* of pollution source contribution
 - 3-way split – human, wildlife (including feral hogs), domestic animals (includes livestock and pets)

- OK to compare *E. coli* results to *Bacteroidales* results, but remember not exactly same pollution source classifications
 - E.g. Domestic animals vs. ruminants, wildlife vs. ruminants/hogs

- *Bacteroidales* results reported as frequency of detection (presence/absence), but not abundance or level of marker present
Considerations For Interpreting BST Results

Bacteroidales PCR specificity typically 90%

However

- Human marker – occasional cross-reactivity with coyote and raccoon feces
- Ruminant marker – cross-reactivity with almost all hog/feral hog feces and occasionally with some other animals but not humans
E. coli Source Identification

- **Human**: 11% (n=5)
- **Domestic Animals**: 16% (n=7)
- **Wildlife**: 35% (n=24)
- **Unidentified**: 18% (n=8)

Bacteroidales Marker Occurrence

- **GenBac**: 100%
- **Hog**: 30%
- **Rum**: 90%
- **Hum**: 0%

E. coli geo. mean during BST sample collection = 8.4 CFU/100 ml
BST Results For Station BC05
FM 1056; Collingsworth County

E. coli Source Identification

- **Human**: 9% (n=6)
- **Domestic Animals**: 19% (n=19)
- **Wildlife**: 41% (n=48)
- **Unidentified**: 31% (n=30)

Bacteroidales Marker Occurrence

- **GenBac**: 100%
- **Hog**: 80%
- **Rum**: 60%
- **Hum**: 40%

n = 12

E. coli geo. mean during BST sample collection = 48.0 CFU/100 ml

- Highest occurrence of unidentified **E. coli**
- Frequent human **Bacteroidales** marker detection, but average human **E. coli** occurrence suggests pollution from distant source or significant but infrequent pollution
BST Results For Station BC06

CR 110; Collingsworth County

E. coli Source Identification

- **Wildlife**: 65% (n=45)
- **Unidentified**: 14% (n=10)
- **Domestic Animals**: 14% (n=10)
- **Human**: 7% (n=5)

Bacteroidales Marker Occurrence

- **GenBac**: 100%
- **Hog**: 40%
- **Rum**: 80%
- **Hum**: 10%

- **E. coli** geo. mean during BST sample collection = 24.8 CFU/100 ml

n = 11
E. coli Source Identification

- Wildlife: 55% (n=42)
- Unidentified: 17% (n=13)
- Domestic Animals: 17% (n=13)
- Human: 11% (n=8)

Bacteroidales Marker Occurrence

- GenBac: 100%
- Hog: 80%
- Rum: 40%
- Hum: 0%

n = 14

E. coli geo. mean during BST sample collection = 40.8 CFU/100 ml
BST Results For Station BC10C
SH 256; Childress County

E. coli Source Identification

- Unidentified: 18% (n=12)
- Human: 18% (n=12)
- Domestic Animals: 12% (n=8)
- Wildlife: 52% (n=36)

E. coli geo. mean during BST sample collection = 18.9 CFU/100 ml

- High occurrence of human *E. coli* and frequent human *Bacteroidales* marker detection suggest frequent pollution

- **However**, low geo. mean levels of *E. coli*, so not likely a significant pollution load
BST Results For Station BC11
US 83; Childress County

E. coli Source Identification

- **Wildlife**: 62% (n=44)
- **Unidentified**: 9% (n=6)
- **Human**: 19% (n=7)
- **Domestic Animals**: 19% (n=13)

Bacteroidales Marker Occurrence

- GenBac: 100%
- Hog: 40%
- Rum: 20%
- Hum: 0%

\[n = 12 \]

E. coli geo. mean during BST sample collection = 14.1 CFU/100 ml
Summary of BST Results

- Approximately 50% of fecal pollution is derived from wildlife, including feral hogs and deer.

- Domestic animals/livestock pollution contributing approximately 20% of fecal pollution, and high frequency of ruminant marker observed across all stations.
 - Continue efforts to minimize livestock impacts, since this pollution source may be more feasibly controlled than wildlife.

- Stations BC05 and BC10C need further investigation to identify sources of human pollution.
 - Need to investigate possible sources near Station BC05 – reunion center, illegal dumping?
 - Strong evidence for human fecal pollution at Station 10C – role of coyotes and raccoons?

- Knowledge and input of stakeholders valued!