

Bacterial Source Tracking Identification of Fecal Pollution Sources Impacting Buck Creek

George D. Di Giovanni, PhD

Professor and Faculty Fellow, Environmental Microbiology Department of Plant Pathology and Microbiology

Texas AgriLife Research Center at El Paso
Texas A&M University System

Acknowledgments

Texas AgriLife Research El Paso Staff

Joy Truesdale

Dr. Elizabeth Casarez

Dr. Karina Barrella

Texas AgriLife Research Vernon Staff

Phyllis Dyer

Funding

Provided by the Texas State Soil and Water Conservation Board through a Clean Water Act §319(h) Nonpoint Source Grant from the U.S. Environmental Protection Agency

There Are E. coli in the Water, **But Where Did They Come From?**

There Are *E. coli* in the Water, But Where Did They Come From?

- **BST** laboratory tests to determine if *E. coli* in water samples came from animal or human feces
- Most *E. coli* BST methods are Library Dependent
 - Need database of reference bacteria from known animal and human sources
- "Local" watershed libraries currently considered most useful
 - Cost and time considerations

Approach Isolation of *E. coli* From Source and Water Samples

- The E. coli isolation from samples using same media for compliance water monitoring
 - USEPA Method 1603 modified mTEC medium
 - Confirmation of β-D-glucuronidase activity of isolates using NA-MUG (same as Colilert and Quanti-Tray)
 - ♦ No broth enrichment or clinical media avoid selecting different populations of *E. coli*

Isolation of *E. coli* From Feces and Water

Fecal Specimens

Modified mTEC

Water Sample Filtered and Filter Placed on Modified mTEC Medium (EPA Method 1603)

E. coli Colonies

Each *E. coli* colony is an "isolate"

E. coli BST Technique 1 ERIC-PCR Fingerprinting

- **▼** Enterobacterial repetitive intergenic consensus sequence polymerase chain reaction (ERIC-PCR)
- Method of generating a DNA fingerprint for each E. coli isolate

Different strains of *E. coli* have different fingerprints

E. coli BST Technique 2 Hindlll Automated RiboPrinting

- Another DNA fingerprinting test
- Also confirms isolates as *E. coli*

·	839	811						611				
_			_	L		-			-	ш	ı	-
	Ξ	=			=		=			=	=	
-	_	_	_	_	_	_	_	_	_	-	_	_
-		=							_			-
_									_			_
-			-			_			-			-
-			_			_			_			_

ľ	Sample	1-1-1	nu c	Similarity to Selected	RiboPrint® Pattern			
	Number	Label	RiboGroup	295-21-S-1	1 kbp 5 10 15 50			
Γ	295-21-S-1	QC 101	HindIII 295-21-S-1	1.00				
	295-21-S-2	QC 101	HindIII 295-21-S-1	0.98	111111			
	295-21-S-3	QC 101	HindIII 295-19-S-1	0.95				
Γ	295-21-S-4	QC 101	HindIII 295-21-S-1	0.97				
Γ	295-21-S-5	QC 101	HindIII 295-21-S-1	0.97				
Γ	295-21-S-6	QC 101	HindIII 295-21-S-1	0.96				
ľ	295-21-S-7	QC 101	HindIII 295-21-S-1	0.93				
	295-21-S-8	QC 101	HindIII 295-21-S-1	0.94				

Data Analysis

- **U** Applied Maths BioNumerics software
- Library accuracy jackknife rates of correct classification (RCC) or average RCC (ARCC)
- Comparison between different BST techniques
 - Data from different BST techniques analyzed within defined parameters
 - Composite data sets

Data Analysis Best Match Approach

- DNA fingerprints Pearson correlation curvebased analyses
- "Best Match" approach with minimum similarity cutoff based on laboratory QC data
 - Water isolate must match library isolate ≥ minimum similarity or unidentified
 - Identification to single library isolate with highest similarity – max similarity approach

Data Analysis Best Match Approach

Best ERIC-PCR
Match (96.9%
Similarity) of Water
Isolate to Known
Source (Pig) Isolate
in Library

Best RiboPrint Match (95.8% Similarity) of Water Isolate to Known Source (Pig) Isolate in Library

Data Analysis Best Match Approach

No Match (Unidentified) Water Isolate, Best ERIC-PCR Match of only 82.4% Sim Library Isolate

No Match (Unidentified) Water Isolate, Best RiboPrint Match of only 65.9% Sim to Library Isolate

ERIC-RP Composite Data Sets

Minimum similarity for match

≥ 80% identical

Texas *E. coli* BST Library (ver. 10-09)

Library Composition

Library Identification Accuracy

1172 isolates from 1045 different human and animal fecal samples

87% ARCC

Library Independent Screening of Pollution Sources Using *Bacteroidales* PCR

- **U** What are *Bacteroidales*?
 - Human and animal fecal bacteria similar to E. coli
 - Order Bacteroidales (or class Bacteroidetes) include several different genera and species of bacteria, including Bacteroides and Prevotella spp.
 - Obligate anaerobes difficult to grow and less likely to multiply in the environment
 - **♦** More abundant in feces than *E. coli*
- Many different Bacteroidales spp./strains shared between different animals and humans
- Markers (PCR primers) developed to subgroups of Bacteroidales that appear host specific

Library Independent Screening of Pollution Sources Using *Bacteroidales* PCR

- **U** Markers available for
 - General marker (humans and animals)
 - Ruminants (cattle, deer, elk, sheep, llama)
 - Humans
 - Hogs (including feral hogs)
 - Horses
- Rapid and less expensive than library methods
- Multiple studies indicate approx. 90% specificity
- Only qualitative or semi-quantitative detection
- **U** Limited markers for wildlife and birds

Sample Processing For Bacteroidales PCR

- Water samples for *E. coli* counts and *Bacteroidales* PCR collected at same time
- Water samples filtered similar to process for E. coli analysis
- **U** DNA extracted from filtered water concentrate
- **U** PCR testing for *Bacteroidales* PCR markers
 - Presence/absence detection
- Both viable and dead Bacteroidales bacteria are detected, and therefore both recent and older contamination detected

Bacteroidales PCR

Human Marker

Ruminant Marker

Hog/Feral Hog Bacteroidales PCR

BST for Buck Creek

- **Water samples collected 2007-2009, mostly routine low-flow conditions**
- **U** 350 *E. coli* isolates from water
 - Identification using Texas Library, including some E. coli isolates from Buck Creek
 - **◆** 53 *E. coli* isolates from 28 Buck Creek known source samples, 31 isolates from the 28 source samples selected for library
- 79 water samples (10 to 20 per station) for Bacteroidales analyses
 - General marker general indication of human and/or animal fecal pollution
 - Human marker
 - Hog marker including feral hogs
 - ▶ Ruminant marker cattle, deer, llamas, sheep

BST for Buck Creek

- **T** Results reported by station
 - **♦** BC03 CR 40; Collingsworth County
 - **♦ BC05 FM 1056; Collingsworth County**
 - **♦** BC06 CR 110; Collingsworth County
 - ♦ BC10A SH 256; Childress County
 - BC10C SH 256; Childress County
 - **♦** BC11 US 83; Childress County

Buck Creek Sampling Sites

Considerations For Interpreting BST Results

- **□** Identification of *E. coli* water isolates at each station presented as pie charts
 - Provides an estimate of pollution source contribution
 - 3-way split human, wildlife (including feral hogs), domestic animals (includes livestock and pets)
- OK to compare *E. coli* results to *Bacteroidales* results, but remember not exactly same pollution source classifications
 - ▶ E.g. Domestic animals vs. ruminants, wildlife vs. ruminants/hogs
- Bacteroidales results reported as frequency of detection (presence/absence), but not abundance or level of marker present

Considerations For Interpreting BST Results

- **U** Bacteroidales PCR specificity typically 90%
- **U** However
 - Human marker occasional cross-reactivity with coyote and raccoon feces
 - Ruminant marker cross-reactivity with almost all hog/feral hog feces and occasionally with some other animals but not humans

BST Results For Station BC03 CR 40; Collingsworth County

E. coli Source Identification

Unidentified 11% (n=8) Domestic Animals 16% (n=7) Wildlife 55% (n=24)

Bacteroidales Marker Occurrence

E. coli geo. mean during BST sample collection = 8.4 CFU/100 ml

BST Results For Station BC05 FM 1056; Collingsworth County

E. coli Source Identification

Bacteroidales Marker Occurrence

E. coli geo. mean during BST sample collection = 48.0 CFU/100 ml

- Highest occurrence of unidentified E. coli
- Frequent human Bacteroidales marker detection, but average human E. coli occurrence suggests pollution from distant source or significant but infrequent pollution

BST Results For Station BC06 CR 110; Collingsworth County

E. coli Source Identification

Bacteroidales Marker Occurrence

E. coli geo. mean during BST sample collection = 24.8 CFU/100 ml

BST Results For Station BC10A SH 256; Childress County

E. coli Source Identification

Bacteroidales Marker Occurrence

E. coli geo. mean during BST sample collection = 40.8 CFU/100 ml

BST Results For Station BC10C SH 256; Childress County

E. coli Source Identification

Bacteroidales Marker Occurrence

E. coli geo. mean during BST sample collection = 18.9 CFU/100 ml

- High occurrence of human E. coli and frequent human Bacteroidales marker detection suggest frequent pollution
- However, low geo. mean levels of E. coli, so not likely a significant pollution load

BST Results For Station BC11 US 83; Childress County

E. coli Source Identification

Bacteroidales Marker Occurrence

E. coli geo. mean during BST sample collection = 14.1 CFU/100 ml

Summary of BST Results

- Approximately 50% of fecal pollution is derived from wildlife, including feral hogs and deer
- Domestic animals/livestock pollution contributing approximately 20% of fecal pollution, and high frequency of ruminant marker observed across all stations
 - Continue efforts to minimize livestock impacts, since this pollution source may be more feasibly controlled than wildlife
- - Need to investigate possible sources near Station BC05 reunion center, illegal dumping?
 - Strong evidence for human fecal pollution at Station 10C role of coyotes and raccoons?
- U Knowledge and input of stakeholders valued!

